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I-56126 Pisa, Italy
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Abstract. We derive and discuss sets of sum rules relating to the density fluctuation operator
and to the single-particle creation and annihilation operators in a superfluid of charged bosons.
The physical interpretation of the particle–particle and particle–density sum rules hinges on
the single-particle excitation spectrum at long wavelengths having a gap equal to the plasma
frequency in the presence of the Bose–Einstein condensate. This spectral property is shown
to follow from the Hugenholtz–Pines relation for the chemical potential in terms of the half-
diagonal two-body density matrix. Data on this density matrix are obtained by quantum Monte
Carlo methods and are used to check the self-consistency between the Hugenholtz–Pines relation
and the value of the chemical potential calculated from the ground-state energy. We also tabulate
the contributions from the plasmon and from multiparticle excitations to various matrix elements
and sum rules at long wavelengths.

1. Introduction

The fluid of point-like spinless charged bosons embedded in a uniform neutralizing
background has drawn some attention in the literature as a model in quantum statistical
mechanics with possible relevance to superconductors [1] and to systems of astrophysical
interest [2, 3]. Early evaluations of the ground-state energy and the spectrum of elementary
excitations in the high-density limit [4, 5] have been followed by variational calculations
using Jastrow wavefunctions [6, 7, 8] and by quantum Monte Carlo (QMC) studies of
ground-state properties [9, 10, 11, 12] over a density range extending down to Wigner
crystallization. Studies of dielectric screening properties have been carried out in the
framework of local field factor theories [13, 14] beyond the random-phase approximation
analysis given by Hore and Frankel [15]. A first attempt to apply the sum rule approach to
charged Bose fluids has recently led to the derivation of two rigorous upper bounds on the
plasmon dispersion relation [16].

Sum rules have often been employed in the literature to explore various dynamic features
of quantum many-body systems from a microscopic point of view. From the density–density
sum rules in charged Fermi fluids it has been shown that the plasmon is the only relevant
long-wavelength excitation [17, 18]. In neutral systems (e.g.4He) a similar analysis was
first carried out for the long-wavelength phononic excitation by Feynman [19]. In Bose
condensed systems broken symmetry leads to a more complex picture, in which density
and single-particle excitations are coupled. A number of mixed particle–density sum rules
exist which have no analogue in non-condensed systems. A complete discussion in the case
of 4He has been given by Stringari [20], who also determined the infrared divergences of
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various physical quantities (e.g. the momentum distribution). We shall see below that the
charged Bose fluid presents a rather different scenario, since the long-range nature of the
Coulomb interactions leads to a gap in the single-particle excitation spectrum and to sharper
infrared divergences.

The main purpose of this work is to give a thorough presentation of the results which can
be obtained from the sum rule approach for the charged Bose fluid and to contrast them with
those applying to the corresponding neutral fluid. The sum rules that we discuss provide
rigorous relationships among different physical quantities, their derivation being based only
on the basic commutation relations. Their interpretation requires that in the long-wavelength
limit the single-particle excitation spectrum coincides with the density excitation spectrum,
i.e. with the plasmonic collective excitation. While at high density this has been shown to
be correct to leading perturbative order [4], a general proof applying to the fluid at arbitrary
coupling strength is given below.

At an intuitive level a justification for the above result is provided by Feynman’s
argument [19] which, though referring to4He in its original formulation, is completely
general since it depends only on the symmetry of the wavefunction. The argument notices
that the lowest-lying excited states are those which involve large groups of atoms or
long wavelengths and that rearrangements of the atoms among themselves do not change
the wavefunction because of the Bose statistics. Therefore to leading order the lowest
excited states in a Bose fluid are the density waves, i.e. the phononic excitation in the
neutral fluid and the plasmon in the charged fluid. The same conclusion can also be
reached from the argument of Gavoret and Nozières [21], stating that in the presence of a
condensate the single-particle and the collective excitations have the same spectrum apart
from a factor. In fact theq = 0 andq = −k terms in the density fluctuation operator
ρk = ∑

q a†
qaq+k describe single-particle excitations with a macroscopic coefficient, their

form being
√

Nn0(ak + a
†
−k).

The above-mentioned gap in the single-particle excitation spectrum, together with
the hypothesis of non-interacting excitations, allows a description of the relevant long-
wavelength physics via the so-called quantum hydrodynamics (QH). This approach is based
on an effective free-boson Hamiltonian, the bosons representing the elementary excitations.
A detailed discussion is given in an appendix, where it is also shown that QH allows one
to compute independently all the infrared divergences that we derive from the sum rule
approach. A complete summary of our main results in the long-wavelength limit can be
found in table 3 below.

2. Density–density sum rules

In the following we consider a system ofN charged bosons embedded in a uniform
neutralizing background, which can be described by the Hamiltonian

H =
∑

k

k2

2m
a

†
kak + 1

2V

∑
pq

k 6=0

vka
†
q+ka

†
p−kapaq (2.1)

whereV is the volume,ak and a
†
k are the single-particle operators andρk = ∑

q a†
qaq+k

is the density operator. As usualvk = 4πe2/k2 and εk = k2/2m represent the interaction
potential and the kinetic energy coefficients. Further,ρ is the average density,ωpl the plasma
frequency,n0 the fraction of particles in thek = 0 state and〈. . .〉 indicates an average over
the ground state of the system. We also recall the useful relationsω2

pl = 2ρvkεk and
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〈a0〉 = 〈a†
0〉 = √

n0N .
The density–density response functionχ(k, ω) describes the density response of the

fluid to an external scalar potential, its imaginary part being related to correlations between
density fluctuations through the fluctuation-dissipation theorem. The sum rule approach to
the study ofχ(k, ω) is based on the observation that its spectral moments are equivalent via
Fourier transformation to time derivatives att = 0, which can be computed as commutators
with the Hamiltonian. Sinceρk is quadratic in the single-particle operatorsak there is no
difference between bosons and fermions, the dominant role being played by the long-range
nature of the Coulomb potential. The frequency moments of Imχ(k, ω) are defined through

mj(k) = − 2

π

∫ ∞

0
Im χ(k, ω)ωj dω = 2

V

∑
|n〉

ωj
n|〈n|ρk|0〉|2 (2.2)

where|0〉 is the ground state and|n〉 are the excited states. The above-mentioned property
and the Kramers–Kronig relations lead to the following results (see for instance [18]):

m−1(k) = −χ(k, 0) = 1

vk

− 1

ρ2KT v2
k

+ O(k6) (2.3)

m0(k) = 1

V
〈ρ†

kρk〉 = 2ρS(k) (2.4)

m1(k) = 1

V
〈[ρ†

k, [H, ρk]] 〉 = 2ρ
k2

2m
(2.5)

m2(k) = 1

V
〈[ρ†

k, H ][ρk, H ]〉 = − 1

V

∑
ij

kikj

∑
p,q

pi

m

qj

m
〈a†

p+k/2ap−k/2a
†
q−k/2aq+k/2〉 (2.6)

and

m3(k) = 1

V
〈[[[ ρ†

k, H ], H ], [H, ρk]] 〉 = 2ρεk

(
ε2
k + 4εk〈KE〉 + ω2

pl(1 − GPV (k)
)

= 2ρεk

(
ω2

pl + 4εk

(
〈KE〉 − 2

15
〈PE〉

))
+ O(k6). (2.7)

HereKT is the isothermal compressibility,〈KE〉 and 〈PE〉 the average kinetic and potential
energies,S(k) the structure factor andGPV (k) a local field factor defined by

GPV (k) = 1

ρ

∫
d3q

(2π)3

(k · q)2

q2k2
(S(q) − S(k − q)). (2.8)

Moments higher than the third are infinite since Imχ(k, ω) ∝ k2ω−11/2 at smallk and large
ω, as in the case of charged fermions [22].

Pines and Nozières [17] have shown that the plasmon is the dominant excitation to
leading order ink in the charged fermion fluid. Their argument is based on them−1- and
m1-sum rules and on some physical assumptions concerning the asymptotics of electron–
hole pair excitations. In appendix A we give an alternative argument based only onm−1,
m1 andm3 without any other assumption. The result is

lim
k→0

Im χ(k, ω)

k2/2m
= − 2ρ

ωpl

(
δ(ω − ωpl) − δ(ω + ωpl)

)
(2.9)

or, with an arbitrary choice of the phase,

〈n|ρk|0〉 '
√

Nk2

2mωpl

. (2.10)
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This proves that the plasmon collective excitation exhausts all the density–density sum rules
to orderk2, while plasmon dispersion and multiplasmon and multiparticle excitations [23]
contribute to orderk4. In contrast, in the corresponding neutral systems the phononic and
multiparticle contributions to the third moment are both of orderk4 [20].

For the sake of completeness we report some upper bounds on plasmon dispersion which
can be derived from the previous sum rules [20, 24, 16], namely

ω
(min)
k 6 m0(k)

m−1(k)
6

√
m1(k)

m−1(k)
6 m1(k)

m0(k)
6 · · · . (2.11)

A variety of other upper bounds which also containm2 can easily be obtained as discussed
e.g. in [20]. However, they provide useful information only if supported by independent
evaluations ofm2, e.g. through Monte Carlo simulations [24].

3. Particle–particle sum rules

In this section the single-particle analogues of the density–density sum rules are discussed.
Such sum rules exist also in the fermionic case, but significant differences arise because of
the statistics. While there is no physical field coupling directly to single-particle excitations,
the following discussion could be formulated in terms of a single-particle response to a
fictitious gauge-breaking field, but this would bring no significant advantage. Use of the
grand-canonical HamiltonianHµ = H−µN is anyway needed since single-particle operators
do not conserve the particle number.

The relevant sum rules are the following:

〈[ak† , ak]〉 =
∑
|n〉

(
|〈n|ak|0〉|2 − |〈n|a†

k|0〉|2
)

= −1 (3.1)

〈0|a†
kak|0〉 =

∑
|n〉

|〈n|ak|0〉|2 = n(k) (3.2)

〈[a†
k, [Hµ, ak]] 〉 =

∑
|n〉

ωn

(
|〈n|ak|0〉|2 + |〈n|a†

k|0〉|2
)

= k2

2m
− µ + 1

V

∑
q 6=0

n(|q + k|)v(q)

(3.3)

and

〈a†
k[Hµ, ak]〉 =

∑
|n〉

ωn|〈n|ak|0〉|2 =
(

µ − k2

2m

)
n(k) − 1

V

∑
q 6=0

n(k, q)v(q). (3.4)

Heren(k) denotes the momentum distribution and the quantity

n(k, q) = 〈a†
kρqak−q〉 (3.5)

is the two-body momentum distribution.
Equations (3.1), (3.2) and (3.3) represent the basic commutation relation, the definition

of the ground-state momentum distribution and the energy-weighted sum rule, respectively.
The first one shows that divergent contributions to the matrix elements, if present, are equal
in |〈n|ak|0〉| and|〈n|a†

k|0〉|. Considering that in a Bose condensed systemn(k = 0) = Nn0

and that (as we shall explicitly demonstrate in section 5 below) the leading contributions
arise at energyωpl , equation (3.3) shows that there is indeed a divergence in the limit
k → 0, i.e.

n(k) ' 1

2ωpl

n0ρvk = 1

4

n0ωpl

εk

. (3.6)
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Using the relation∫
d3q

(2π)3

1

q2(q − k)2
= 1

8k
(3.7)

the subleading divergent contribution to the energy-weighted sum rule can now be determine

〈[a†
k, [Hµ, ak]] 〉 −→

k→0
n0ρv(k) + 4πe2

16

n0mωpl

k
. (3.8)

By the same divergence cancellation argument from equation (3.1) this leads to a
determination of the subleading divergent contribution to the momentum distribution, with
the result

n(k) = 1

4

n0ωpl

εk

+ 4πe2

32

n0mωpl

k
. (3.9)

The limiting result (3.9), which is recovered independently by QH arguments in appendix
B, will be confirmed by the particle–density sum rules to be discussed in the following
section. The present derivation clearly shows how the combined effects of the Bose
condensate and of the singular nature of the Coulomb potential at smallk affect the
momentum distribution. This divergent behaviour has been found to be consistent with
QMC data in [12]. It is also consistent with the rigorous lower bound imposed by the
indetermination principle [25]:

n(k) > n0

4S(k)
− 1

2
(3.10)

whereS(k) → εk/ωpl for k → 0.
Finally, equation (3.4) will be used in section 5 to prove that the single-particle

excitations start at the plasma frequency in the long-wavelength limit.

4. Particle–density sum rules

The sum rules presented in this section are peculiar to Bose condensed systems. They
are based on the fact that expectation values of the form〈ρka−k〉 can be non-vanishing
in the presence of broken phase symmetry. A naive explanation can be found in the fact
that an operatora†

k at k = 0 is equivalent to theC-number
√

Nn0. As shown in [20] in
the case of a neutral Bose superfluid the particle–density sum rules allow one to relate the
density–density sum rules to the particle–particle ones.

4.1. The Bogoliubov sum rule

Explicit evaluation of the commutator [ρk, a−k] yields

〈[ρk, a−k]〉 =
∑

n

[〈n|ρ†
k|0〉〈n|a−k|0〉 − 〈n|a†

−k|0〉〈n|ρk|0〉] = −
√

Nn0. (4.1)

If |n〉 is the plasmon stateρk|0〉, then the matrix elements〈n|ρk|0〉 are of orderk (see
equation (2.10)), but otherwise they are of orderk2 or lower. Therefore, if〈n|a†

k|0〉 does
not contain divergences stronger thank−1 the plasmon state exhausts this sum rule and we
have

〈n|ak − a
†
k|0〉 = −

√
n0ωpl

k2/2m
. (4.2)
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4.2. The particle–densityf -sum rule

Expanding〈[[ρk, Hµ], a−k]〉 and using the relation [V, ρk] = 0 one obtains [26]

〈[[ρk, Hµ], a−k]〉 =
∑
|n〉

ωn(〈0|ρk|n〉〈n|a−k|0〉 + 〈0|a−k|n〉〈n|ρk|0〉) =
√

Nn0
k2

2m
. (4.3)

This equation is exact at anyk and may be called the particle–densityf -sum rule.
The same considerations as in the previous subsection lead to

〈n|ak + a
†
k|0〉 ∝ k. (4.4)

Comparing with equation (4.2) we get

〈n|ak|0〉 = −〈n|a†
k|0〉 = −1

2

√
n0ωpl

k2/2m
(4.5)

which is consistent with equation (3.6) and has the advantage of fixing the relative phase
of the ρk- andak-operators.

4.3. The particle–density polarizability

In this subsection we discuss the analogue of the compressibility sum rule for the mixed
polarizability within the framework of generalized linear response theory.

The relevant physical process is the change in the number of Bose condensed particles
induced by a change in the chemical potential. The perturbing Hamiltonian is

H ′ =
∫

d3r δµ(r) ρ(r) (4.6)

and the static particle–density response functionχaρ(k) is defined by

δ〈ak〉 = χaρ(k) δµ(k). (4.7)

Since〈a0〉 = √
Nn0 we have

χaρ(k → 0) = δ
√

Nn0

δµ
. (4.8)

In the same limit the density–density response functionχ relates the variation of the
chemical potential to a density modulation. Recalling the long-wavelength expansion given
in equation (2.3), we have

δρ = χ δµ = − 1

vk

δµ. (4.9)

Recovering the microscopic expression forχaρ and using the above relations we obtain

χaρ(k → 0) =
∑
|n〉

〈0|ρ†
k|n〉〈n|ak|0〉 + 〈0|ak|n〉〈n|ρk|0〉

ωn

= −
√

Nn0
k2/2m

n0ω
2
pl

∂(n0ρ)

∂ρ
.

(4.10)

The particle–density polarizability vanishes in thek → 0 limit because the perturbation
HamiltonianH ′ does not modify the background charge density. The corresponding osmotic
compressibility also vanishes. In the neutral system this effect is absent andχaρ is finite at
k = 0 [20]. In contrast, the derivative∂n0ρ/∂ρ does not depend on whether the background
is held fixed, as in this case, or is modulated in order to guarantee charge neutrality, as in
usual thermodynamic derivatives.

We finally remark that in the charged Bose fluid the condensate fraction increases with
density [4, 12]. Therefore the derivative in equation (4.10) is positive, as in the weakly
interacting Bose gas, while it is negative in4He [20].
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4.4. The two-body momentum distribution

Ristig and Clark [27] have parametrized the long-range behaviour of the two-body density
matrix ρ2(r1, i2; r′

1, r
′
2) at i2 = r′

2 with a functionF1(r1 − i2) as

lim
r′

1→∞
ρ2(r1, i2; r′

1, i2) = n0ρ
2(1 + F1(|r1 − i2|)) (4.11)

with F1(r → ∞) = 0. The two-body density matrix is the Fourier transform of the
two-body momentum distributionn(k, q):

n(k, q) = 1

V

∫
ρ2(r1, i2; r′

1, i2)e
−iq·(r′

1−r1)e−ik·(r1−i2) dr1 di2 dr′
1 (4.12)

(see equation (3.5)). The Fourier transform ofF1(r)

F1(k) = ρ

∫
F1(r)e

ik·r dr (4.13)

is related to theq = k andq = 0 components ofn(k, q) through the relations

n(0, k) =
√

Nn0〈ρka−k〉 = Nn0F1(k) (4.14)

and

n(k, k) =
√

Nn0〈a†
kρk〉 = Nn0F1(k). (4.15)

In the case of4He Ristig and Clark [27] have shown that limk→0 F1(k) = −1/2. Their
proof is based on the following symmetry and clustering properties of the one- and two-body
density matrices:

lim
|r1−r′

1|→∞
ρ1(r1, r

′
1) = ρn0 (4.16)

ρ2(r1, i2; r′
1, i2) = ρ2(r

′
1, i2; r1, i2) (4.17)∫

ρ2(r1, i2; r′
1, i2) di2 = (N − 1)ρ1(r1, r

′
1) (4.18)

and

lim
|r1−r′

1|→∞
ρ2(r1, i2; r′

1, i2) = n0ρ
2[1 + F1(|r1 − i2|) + F1(|r′

1 − i2|)]. (4.19)

The only non-trivial relation is the last one, giving the behaviour ofρ2 for large separation
betweenr1 and r′

1. It has been obtained by recalling the definition (4.11) ofF1 and the
symmetry property (4.17). Three-body correlations can be neglected to leading order in the
particle–particle separation.

Expanding
∫
ρ2(r1, i2; r′

1, i2) di2 at large|r1−r′
1|, once via equations (4.18) and (4.16)

and once via equation (4.19), we obtain

−n0ρ = 2n0ρ
2
∫

F1(r) dr (4.20)

which can be written asF1(k = 0) = −1/2 or, equivalently,

lim
k→0

〈a†
kρk〉 = lim

k→0
〈ρka−k〉 = −

√
Nn0

2
. (4.21)

The same conclusion can be independently recovered by appropriately expanding the QH
matrix elements in〈ρka−k〉.
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5. Single-particle excited states at long wavelength

The single-particle excited state|Pk〉 is defined by

|Pk〉 = 1√
n(k)

ak|0〉. (5.1)

Its average energyεP (k) = 〈Pk|Hµ|Pk〉/〈Pk|Pk〉 can be evaluated by using the sum rule in
equation (3.4), with the result

εP (k) =
∑
|n〉

ωn|〈n|ak|0〉|2
/ ∑

|n〉
|〈n|ak|0〉|2 =

(
µ − k2

2m

)
− 1

V n(k)

∑
q 6=0

n(k, q)v(q).

(5.2)

In the k → 0 limit it is necessary to consider separately theq = k term in the sum in
equation (5.2), which is singular because theaq−k-operator inn(k, q) acts on the condensate.
Namely, we write

1

V n(k)

∑
q 6=0

n(k, q)v(q) = 1

V n(k)

∑
q 6=0
q 6=k

n(k, q)v(q) + 1

V n(k)
n(k, k)v(k). (5.3)

The first contribution is regular at smallk, yielding

1

V Nn0

∑
q 6=0

n(0, q)v(q) =
∫

d3q

(2π)3
v(q)F1(q) (5.4)

whereF1(q) is defined by equations (4.14) and (4.15). The second term in equation (5.3)
can be evaluated in thek → 0 limit as

lim
k→0

1

V

1

n(k)
n(k, k)v(k) = lim

k→0

1

V

4εk

n0ωpl

Nn0F1(k)vk = −ωpl (5.5)

where the relationsF1(k = 0) = −1/2 and n(k → 0) ' 4εk/noωpl have been used.
Therefore,

lim
k→0

εP (k) = ωpl + µ −
∫

d3q

(2π)3
v(q)F1(q). (5.6)

We have thus proved that the relation limk→0 εP (k) = ωpl is equivalent to the relation of
Hugenholtz and Pines [28],

µ =
∫

d3q

(2π)3
v(q)F1(q). (5.7)

This relation is tested numerically by QMC methods immediately below.

6. Monte Carlo study of F1(k)

In this section the functionF1(k) is investigated by QMC simulations and equation (5.7)
is verified numerically by comparing the integral on its right-hand side with the value of
the chemical potential obtained from QMC results for the ground-state energy [12]. The
Fourier transform ofF1(k) is given by

lim
r′

1→∞
ρ2(r1, i2; r′

1, i2) = n0ρ
2(1 + F1(|r1 − i2|)) (6.1)

(see equation (4.11)). We have performed both variational Monte Carlo (VMC) and diffusion
Monte Carlo (DMC) simulations for various numbers of particles, ranging from 32 to 200.
A separate analysis has been made using real-space and reciprocal-space estimators.
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6.1. Real-space results

The estimator is

f (|r1 − i2|) = 1

V

1

ρ2

∫
V

d3r′
1 ρ2(r1, i2; r′

1, i2) = 1

V

∫
V

d3r′
1

〈
9(r′

1, i2, . . .)

9(r1, i2, . . .)

〉
(6.2)

which equalsn0(1+F1(|r1 − i2|)) in the thermodynamic limit. Finite-size corrections arise
mainly from the regions wherer′

1 ' i2 or r′
1 ' r1, and these are of relative importance

1/N .

Figure 1. The functionf (r) = n0(1+ F1(r)) at rs = 10 as a function ofr/r0, where the mean
interparticle distancer0 is given by(4πρ/3)−1/3. VMC results withN = 32, 64, 125 and 200
are shown, from top to bottom. The full curve is from a DMC calculation atN = 200.

Table 1. Computed values ofI1 and I2 from real-space estimators. The digits in parentheses
represent the statistical error bar in the last decimal place. No size extrapolation has been made.
Energies and frequencies are expressed in rydbergs.

rs N I1 I2 µ ωpl

10 64 −0.52(2) −0.162(3) −0.1557 0.1095
10 125 −0.46(4) −0.153(4) −0.1557 0.1095
10 200 −0.48(2) −0.153(2) −0.1557 0.1095
10(DMC) 200 −0.48(2) −0.151(2) −0.1557 0.1095

1 200 −0.46(4) −0.93(3) −0.977 3.46
0.1 200 −0.45(4) −5.2(1) −5.62 109.5

Figure 1 shows the functionf (r) at rs = 10 for N = 32, 64, 125 and 200. The size
effect which is apparent in the data in figure 1 can be greatly reduced by dividing each
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Figure 2. The same curves as in figure 1, after division by their large-r limit.

Table 2. Computed values ofI2 from reciprocal-space estimators. Energies and frequencies are
expressed in rydbergs.

rs N I2 µ ωpl

10 64 −0.1546 −0.1557 0.1095
10 125 −0.1604 −0.1557 0.1095
10 200 −0.1565 −0.1557 0.1095
10(DMC) 200 −0.1558 −0.1557 0.1095
1 200 −0.917 −0.977 3.46

curve by its value at larger, as is shown in figure 2. These curves are then integrated to
determine the values of the integrals

I1 = ρ

∫
V

F1(r) d3r = F1(k = 0) (6.3)

and

I2 = ρ

∫
V

F1(r)v(r) d3r =
∫

d3k

(2π)3
F1(k)v(k). (6.4)
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According to the discussion in section 5 these ought to be equal to−1/2 and to the chemical
potential µ, respectively. The results are shown in table 1 together with the chemical
potential as obtained from interpolation of QMC data on the ground-state energy [12]. The
table also reports the plasma frequency, showing that it is much larger than the remaining
differences betweenµ and I2 and thus confirming thatεP (k) goes toωpl for k → 0 as
shown in equation (5.6).

Figure 3. F1(r) at rs = 0.1 as a function ofr/r0 from VMC data withN = 200. Also shown
is the asymptotic behaviour given by the cusp condition in equation (6.5).

We also remark that good agreement has been found with the appropriate cusp condition

d

dr
F1(r)

∣∣∣∣
r=0

= 1

2a0
F1(r = 0) (6.5)

as is shown in figure 3 forrs = 0.1. As usual, the cusp condition is relevant only at large
densities, whereF1(r = 0) 6= 0.

6.2. Reciprocal-space results

The estimator used is

f (k) = 1

V

1

ρ2

∫
V

d3r′
1 eik·(r1−i2)ρ2(r1, i2; r′

1, i2) = 1

V

∫
V

d3r′
1

〈
eik·(r1−i2)

9(r′
1, i2, . . .)

9(r1, i2, . . .)

〉
(6.6)

which equalsn0(F1(k) + Nδk0) in the thermodynamic limit. The condensate fraction is
obtained from the relationf (k = 0) = Nn0.

Figure 4 shows the resulting DMC estimate ofF1(k), which is clearly consistent with the
theoretical limitF1(k → 0) = −1/2. Integration overk leads to significant averaging out



1932 M L Chiofalo et al

Figure 4. The functionF1(k) versuskr0 at rs = 10 from DMC data withN = 200.

of the errors and to a very precise estimate of the integralI2 at intermediate density. These
data are reported in table 2. This kind of computation is more difficult at high densities
because the momentum distribution is very narrow and only a few sampling wave vectors
fall into the region where it is significantly different from zero. Strong size effects have
also been observed in this regime. Therefore the result atrs = 1 in table 2 is less reliable
than those atrs = 10. It has not been possible to obtain reliable results atrs = 0.1.

7. Conclusions

As a summary of the main results of our analysis we present in table 3 a tabulation of the
contributions from the plasmon excitation and from multiparticle excitations to the various
matrix elements and sum rules at long wavelengths. The notation ‘6 k2’ means ‘of order
kn with n > 2’. We have marked with an asterisk those results which arise from exact
cancellation at leading order and with a bullet those results which are identical for charged
and neutral bosons. These latter ones are thef -sum rule, the commutation relation sum
rule and the Bogoliubov sum rule.
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Table 3. Leading and subleading contributions to various matrix elements and sum rules in the
limit k → 0. The single-plasmon and the multiparticle contributions are given separately.

Plasmon Multiparticle

〈n|ρk|0〉 = 〈n|ρ†
k|0〉

√
Nk2

2mωpl

∝ k ∝k2

〈n|ak|0〉 −
√

n0
ωpl

4εk

∝ 1

k

√
n0

N

mωpl

2|q||k − q| ∝ 1√
k

〈n|a†
k|0〉

√
n0

ωpl

4εk

∝ 1

k

√
n0

N

mωpl

2|q||k − q| ∝ 1√
k

ωn0 ωpl 2ωpl∑
n

|〈n|ρk|0〉|2ω−1
n Nεkω

−2
pl ∝k4

∑
n

|〈n|ρk|0〉|2 Nεkω
−1
pl ∝k4

∑
n

|〈n|ρk|0〉|2ωn Nεk ∝k4 •∑
n

|〈n|ρk|0〉|2ω2
n Nεkωpl ∝k4

∑
n

|〈n|ρk|0〉|2ω3
n Nεkω

2
pl ∝k4

∑
n

[
|〈n|ak|0〉|2 + |〈n|a†

k|0〉|2
]
ω−1

n n0m/k2 m2n0ωpl/64ρk∑
n

|〈n|ak|0〉|2 n0mωpl/2k2 m2n0ω
2
pl/64ρk∑

n

[
|〈n|ak|0〉|2 − |〈n|a†

k|0〉|2
]

6constant(∗) 6constant(∗) •∑
n

[
|〈n|ak|0〉|2 + |〈n|a†

k|0〉|2
]
ωn n0mω2

pl/k2 m2n0ω
3
pl/16ρk∑

n

|〈n|ak|0〉|2ωn n0mω2
pl/2k2 m2n0ω

3
pl/32ρk

∑
n

〈n|ρk|0〉〈n|ak + a
†
k|0〉/ωn 6k2 (∗) 6k2 (∗)∑

n

〈n|ρk|0〉〈n|ak − a
†
k|0〉 −√

Nn0 6k2 (∗) •∑
n

〈n|ρk|0〉〈n|ak|0〉 −√
Nn0/2 ∝k3/2

∑
n

〈n|ρk|0〉〈n|ak + a
†
k|0〉ωn 6k2 (∗) ∝k3/2

∑
n

〈n|ρk|0〉〈n|ak|0〉ωn

√
Nn0ωpl/2 ∝k3/2

Appendix A. Asymptotics of density–density matrix elements

In this appendix we give a rigorous proof of the fact that the plasmon excitation exhausts
the density–density sum rules to leading order ink. Our derivation is based only on the
m−1-, m1- andm3-sum rules and is therefore valid for both bosons and fermions.

We definef (ω) as the leading contribution to the density–density spectral weight in the
limit k → 0,

f (ω) = − lim
k→0

vk Im χ(k, ω). (A.1)
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Equations (2.5), (2.7) and (2.3) become

2

π

∫ ∞

0
ω−1f (ω) dω = 1 (A.2)

2

π

∫ ∞

0
f (ω) dω = ω2

pl (A.3)

and
2

π

∫ ∞

0
ω3f (ω) dω = ω4

pl. (A.4)

We next make use of Schwartz’s lemma, stating that(∫
g(x)h(x) dx

)2

6
∫

g2(x) dx

∫
h2(x) dx (A.5)

for two arbitrary functionsg(x) andh(x), with the equality holding if and only if there is
a constantλ such thatg(x) = λh(x) almost everywhere. By substitutingg(ω) =

√
ω3f (ω)

and h(ω) =
√

ω−1f (ω) into equation (A.5) we see from equations (A.2)–(A.4) that the
equality holds in equation (A.5). Therefore

√
ω3f (ω) = λ

√
ω−1f (ω) or ω4f (ω) = λf (ω).

We conclude thatf (ω) must be proportional to a delta function, whose position and
weight can be determined by insertingf (ω) = A δ(ω − ω0) in the previous relations. A
contribution forω < 0 is then obtained by recalling that Imχ(k, −ω) = − Im χ(k, ω). The
final result

lim
k→0

vk Im χ(k, ω) = −ωpl

(
δ(ω − ωpl) − δ(ω + ωpl)

)
(A.6)

coincides with equation (2.9) in the main text.

Appendix B. Quantum hydrodynamics

In this appendix we discuss in some detail the QH approach to the charged boson problem
and show that one can independently recover from it all of the results that we have obtained
from sum rule arguments. A similar approach for the neutral boson fluid was sketched
in [29].

As discussed in the introduction, QH is based on the assumption of non-interacting
elementary excitations, which can be described as fluctuations of the superfluid phase
operatorφ(r). This is defined by the relation9(r) = √

n0 exp{iφ(r)} and will be considered
as a small parameter. By expanding the particle operator9(r) in powers ofφ(r) we obtain

9(r) = √
n0eiφ(r) ' √

n0

(
1 + iφ(r) − 1

2
φ2(r) + O(φ3)

)
(B.1)

which can be Fourier transformed to give

ak =
√

n0Nδk0 + i
√

n08k − 1

2

√
n0√
N

∑
q

8q8k−q. (B.2)

The Hamiltonian can be written as

H =
∫

ρ d3r
1

2m
(∇φ(r))2 + 1

2
ρ2

∫
d3r d3r′ ρ(r)ρ(r′)

e2

|r − r′|
=

∑
k

k2

2m
8−k8k + 1

2V

∑
k

vkρkρ−k. (B.3)
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The assumption of non-interacting elementary excitations is equivalent to theansatz

H =
∑

k

ωk

(
c
†
kck + 1

2

)
. (B.4)

The operatorsc†
k and ck can be expanded in terms of the phase and density fluctuation

operatorsck = αk8k + βkρk, the result being

H =
∑

k

(
ωk|αk|28†

k8k + ωk|βk|2ρ†
kρk + · · ·

)
(B.5)

where the dots indicate mixed terms describing couplings between phase and density
fluctuations. They are supposed to vanish in the hydrodynamic regime. The present approx-
imation is therefore equivalent to the statement that [8k, ρk] is a C-number.

By equating corresponding terms we obtain

|αk| =
√

k2/2m

ωk

(B.6)

|βk| =
√

ρvk

2ωk

(B.7)

and, with straightforward algebra,

8k = ck − c
†
−k

2αk
= i

2

√
ωk

k2/2m
(ck − c

†
−k) (B.8)

and

ρk = ck + c
†
−k

2βk
= 1

2

√
2ωk

ρvk

(ck + c
†
−k). (B.9)

Here, the phases have been chosen in accord with equation (2.10).
We finally expand the single-particle operatorsak in terms ofck andc

†
k:

ak =
√

Nn0δk0 + √
n0

√
ωk

εk

ck − c
†
−k

2

+
√

n0

2
√

N

∑
q

√
ωq

q2/2m

√
ωk−q

(k − q)2/2m

cq − c
†
−q

2

ck−q − c
†
q−k

2
+ · · · . (B.10)

This formula allows one to reduce expectation values between states of the interacting
system to the trivial matrix elementsck|0〉 = 0 and〈0|ckc

†
k|0〉 = 1.

Since we are interested in infrared divergences the details at finite and largek are
immaterial, and in particular we can safely assume thatωk = ωpl . If |k, ωpl〉 = c

†
k|0〉 is the

state of momentumk and energyωpl with one plasmon excited, we have

〈k, ωpl|ak|0〉 = −
√

n0ωpl

4εk

(B.11)

and

〈k, ωpl|a†
k|0〉 =

√
n0ωpl

4εk

. (B.12)

Considering now two-plasmon terms we find

〈k, 2ωpl, q|ak|0〉 =
√

n0

N

mωpl

2|q||k − q| (B.13)



1936 M L Chiofalo et al

and

〈k, 2ωpl, q|a†
k|0〉 =

√
n0

N

mωpl

2|q||k − q| (B.14)

where|k, 2ωpl, q〉 = c
†
k−qcq|0〉 is the state of total momentumk and energy 2ωpl with two

plasmons excited, with momentumq andk − q respectively. A factor of 2 has come from
the fact that|k, 2ωpl, q〉 = |k, 2ωpl, k − q〉.

The momentum distribution can be straightforwardly evaluated as

n(k) = 〈0|a†
kak|0〉
= n0

ωpl

4k2/2m
− 2

n0

64N

∑
q

ωpl

q2/2m

ωpl

(k − q)2/2m

= n0
ωpl

4εk

+ m2n0ω
2
pl

64ρ k
+ · · · . (B.15)

The last term has been expanded using equation (3.7).
Divergent contributions to the other sum rules can be similarly evaluated, the results

being in complete agreement with those obtained in the main text. We finally remark
that, while the leadingk−1 divergent contributions to〈n|ak|0〉 arise from single-plasmon
states, the subleadingk−1/2 contributions arise from double-plasmon states. Other (non-
hydrodynamic) contributions are expected to be finite or zero in thek → 0 limit.
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